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Previously it was shown that male mice, when they encounter female mice or their pheromones, emit ultrasonic
vocalizations with frequencies ranging over 30–110 kHz. Here, we show that these vocalizations have the
characteristics of song, consisting of several different syllable types, whose temporal sequencing includes the
utterance of repeated phrases. Individual males produce songs with characteristic syllabic and temporal structure. This
study provides a quantitative initial description of male mouse songs, and opens the possibility of studying song
production and perception in an established genetic model organism.
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Introduction

Many animals communicate using sound. Often, brief
sounds are produced to warn of danger or mediate aggressive
encounters. Some species, however, produce long sequences
of vocalizations often called ‘‘songs.’’ Most commonly, these
long sequences are generated as a part of courtship. For
example, many insects and amphibians [1] advertise their
presence and identity with a single type of utterance—which,
depending on the species, might be described as a chirp, click,
or whine—repeated several times to form a ‘‘phrase,’’ with
silent gaps between phrases. The utterance, its repetition
rate, and the number of repetitions in a phrase are
characteristic of the species [1]. More complex vocalizations
are observed in many birds [2], as well as in a few mammals
such as whales [3] and bats [4]. These species generate
multiple types of sounds organized in more intricate phrases.

Rodents produce a variety of social vocalizations, including
vocalizations audible to humans, like postpartum sounds and
distress calls, as well as ultrasonic vocalizations [5,6]. In mice,
ultrasonic vocalizations utilize frequencies higher than 30
kHz [7], and therefore cannot be detected directly by human
ears. A number of studies have shown that mice produce
ultrasonic vocalizations in at least two situations: pups
produce ‘‘isolation calls’’ when cold or when removed from
the nest [8], and males emit ‘‘ultrasonic vocalizations’’ in the
presence of females or when they detect their urinary
pheromones [6,9–11]. Most commonly, these sounds have
been recorded using a detector with narrow frequency tuning
[9,10], which suffices to estimate the amount of vocalization.
However, because of its narrow frequency tuning, such a
detector does not record the acoustical details of these
vocalizations.

While numerous studies have focused on the circumstances
leading to ultrasound production, few have examined the
sounds themselves. Sales [7] observed that these vocalizations
consisted of a series of discrete utterances, with species-
specific differences in vocalizations. Some diversity was also
noted among the utterances within a species [6,7], but it was
not determined whether this latter variability was continu-
ous—as in the case, for example, of the ‘‘random’’ variability
observed when a single word is spoken many times—or
whether the utterances fall into distinct categories. In a
recent quantitative study of mouse vocalizations, Liu et al.
[12] studied changes in pup vocalizations during the first 2 wk
after birth, and compared these to adult vocalizations.

However, this study focused only on the aggregate properties
of vocalizations, measuring parameters such as median pitch
and call rate, which, if applied to humans, would be more
analogous to ‘‘voice’’ than to speech. To date, no study that
we know of has examined whether the discrete utterances
consist of distinct syllable types, or whether these vocal-
izations have significant temporal structure.
Here, we provide a quantitative description of the ultra-

sonic vocalizations of the adult male mouse, and show that
they display unexpected richness, including several syllable
types organized into phrases and motifs. Thus, these vocal-
izations display the characteristics of song [1,3,13]. Different
males, even though genetically identical, show small but
significant differences in syllable usage and the temporal
structure of their songs. These results indicate that commu-
nication among mice may be more complex than previously
appreciated. Because of the ubiquity of the mouse for
physiological and genetic investigations, these observations
may lead to new opportunities in studies of the biological
basis of song production and perception.

Terminology
As the terminology used to describe animal vocalizations is

varied, we adopt the following definitions. A ‘‘syllable’’ is a
unit of sound separated by silence from other sound units
[14]; it may consist of one or more ‘‘notes,’’ continuous
markings on a sonogram. A ‘‘syllable type’’ is a category of
syllable, observed regularly in the animal’s vocalization,
distinct from other syllable types. A ‘‘phrase’’ is a sequence
of syllables uttered in close succession. A ‘‘phrase type’’ or
‘‘motif’’ is a sequence of several syllables, falling into one or
more syllable types, where the entire sequence is observed
repeatedly in the animal’s vocalization.
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The term ‘‘song’’ has been used with a variety of
connotations, so that Broughton [13] offers three different
definitions of song: a sensu latissimo, a ‘‘sound of animal origin
which is not both accidental and meaningless,’’ which
includes relatively simple vocalizations often described as
‘‘calls’’; a sensu stricto, ‘‘a series of notes [or syllables], generally
of more than one type, uttered in succession and so related as
to form a recognizable sequence or pattern in time’’; and a
sensu strictissimo, ‘‘a complete succession of periods or
phrases,’’ in which a song consists of several distinct motifs,
often delivered in a characteristic sequence.

Results

Listening to Ultrasonic Vocalizations
To induce ultrasonic vocalizations, male mice of the

B6D2F1 strain were presented with sex-specific odors applied
on cotton swabs (Figure 1). We tested dilute urine of either
sex (BALB/c strain) and mixtures of urine from both sexes.
(The correspondence between stimulus identity and vocal
response will be reported elsewhere.) We recorded all sounds
in the chamber with a microphone with flat frequency
response from 20 Hz to 100 kHz. While these vocalizations are
well beyond the range of human hearing, we make them
audible through two techniques. Most straightforward is to
play them back slowly. When slowed 163, these vocalizations
sound like a series of breathy whistles (Audio S1). However,
slow playback makes it difficult for human listeners to
develop an appreciation of the temporal sequence of the
vocalizations. Using a phase vocoder algorithm [15], the pitch
of these vocalizations can be dropped several octaves without
lengthening the duration of the playback. These pitch-shifted
vocalizations are reminiscent of birdsong (Audio S2). Readers
are urged to listen to these recordings.

Elementary Features of Vocalizations
Male mouse ultrasonic vocalizations consisted of a rapid

series of ‘‘chirp-like’’ syllables in the 30–110 kHz band (Figure
1). Syllables were of varying duration (approximately 30–200
ms), uttered at rates of about ten per second. Most syllables
involved rapid sweeps in frequency, with rates of approx-
imately 1 kHz/ms typical. Over tens of seconds, periods of
closely spaced syllables alternated with periods of silence.
These features of adult male vocalizations, and their analogs
for the isolation calls of mouse pups, have been previously
described [7,12].
The microphone recorded a variety of sounds in the test

chamber, including noises from movement, gnawing, contact
with the cage wall, audible squeaks, and ultrasonic vocal-
izations. For the purposes of this study, we excluded sounds
other than ultrasonic vocalizations. The majority of extra-
neous sounds fell below 30 kHz, and were excluded by
selecting the appropriate frequency band. However, some
sounds, particularly brief ‘‘snaps,’’ penetrated into the
frequency band of the ultrasonic vocalizations. We developed
an automated algorithm to recognize ultrasonic vocalizations
in terms of their generic features. Subjectively, the algorithm
appears no worse than a well-trained human in identifying
these vocalizations (see Materials and Methods; Figure 1).

Features of Syllables: Pitch Changes
As reported previously [7], inspection (Figure 1) suggests

that some syllables involve relatively sudden, large changes
(‘‘jumps’’) in frequency. To determine whether these fre-
quency jumps are stereotyped or random, we analyzed a
collection of 750 syllables uttered by one mouse in a single
210-s trial. We simplified our description of each syllable by
extracting the dominant frequency (the ‘‘pitch’’) as a function
of time (Figure 2A). For each syllable, we compared the pitch
at one moment with the pitch in the next time bin,
approximately 1 ms later. These pitch pairs were pooled for
all 750 syllables, resulting in a total of 31,303 consecutive
pitch pairs. This analysis (Figure 2B) revealed four distinct
clusters of pitch changes. The long cluster along the diagonal
corresponds to the gradual shift in pitch occurring at most
time points in all syllables. Two distinct off-diagonal clusters
reveal large, stereotyped jumps to or from comparatively low
frequencies (35–50 kHz). These downward (‘‘d’’) and upward
(‘‘u’’) jumps are often paired in a syllable (see below and insets
for Figure 2B), and will be collectively described as ‘‘low
jumps.’’ The cluster just below the diagonal, containing
transitions from 70–90 kHz down to 55–70 kHz, results from a
third type of jump (‘‘high jump,’’ or ‘‘h’’). These jumps were
often, but not exclusively, associated with a brief ‘‘grace note’’
at the beginning of a syllable (see jump labeled ‘‘h’’ in lower
inset, Figure 2B).
These pitch jumps were identified in Figure 2B from a

single 210-s recording from one mouse. To determine
whether these jumps are stereotypic features of the ultrasonic
vocalizations of all male mice, we performed the same
analysis for a 210-s trial from each of 45 different males.
The pitch changes in adjacent time bins are pooled across
mice in Figure 2C. Both the number of clusters and their
positions and sizes are essentially unchanged, and examples
of all three types of jumps were broadly distributed across
mice (Figure 2D). Thus, at least for similarly aged males of the

Figure 1. Male Mice Vocalize in the Ultrasound after Olfactory

Exploration of Urinary Cues

A cotton swab containing female mouse urine (top) was introduced at
approximately 30 s into a 210-s trial. Arrow indicates the time of first
contact with the cotton swab. Recorded acoustical power is represented
as a function of time and frequency, with shading increasing with power.
Power below 25 kHz was truncated. Bottom, an expansion of a 2-s period
showing vocalizations in greater detail. Individual syllables, as identified
by an automated algorithm, are spanned by magenta lines below.
DOI: 10.1371/journal.pbio.0030386.g001
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B6D2F1 strain, these pitch jumps are a universal feature of
ultrasonic vocalizations.

Pitch Jumps and Mechanisms of Sound Production
Many syllables with low jumps display both a fundamental

frequency and a faint first harmonic during the low-
frequency period (Figure 3A; see also Figures 1 and 2A).
The frequency of the harmonic is almost precisely twice that
of the fundamental, suggesting the involvement of a
resonator in the production of these sounds. A priori, this
resonator might be the vocal folds of the larynx. However,
based on the effect of partial replacement of air with helium,
Roberts [16] argued that these sounds are not produced by
the vibration of vocal cords. Instead, he proposed that
ultrasound arises from an aerodynamic whistle, and showed
that mechanical whistles can produce sounds similar to the
examples described by Sales [7], including pitch jumps.

While our recordings appear largely consistent with
Roberts’s results, several features of these vocalizations
indicate that their production is more sophisticated than
that of a whistle from a rigid, static pipe. The rigid whistles
investigated by Roberts had a characteristic relationship
between frequency and fluid velocity [16]. Frequency was

fairly stable over a range of velocities, and would suddenly
jump to a new frequency at yet higher or lower velocities. In
contrast, the pitch of mouse vocalizations is modulated
considerably, in both a continuous and discrete (jump)
fashion. Despite their stereotyped form, jumps were not
obligatory upon reaching a particular frequency. While
down-type jumps began from frequencies of 65–80 kHz (see
Figure 2B), these frequencies were well-sampled even in
syllables that lack these jumps (Figure 3B). Furthermore, if
jumps were produced by changes in air velocity, one might
expect to see differences in vocal power between cases where
jumps do and do not occur. In contrast with this expectation,
the power distributions of syllables both with and without ‘‘d’’
jumps overlap considerably (Figure 3C), although variability
in the mouse’s head position and orientation relative to the
microphone could obscure a true relationship.
Finally, the fine-scale temporal structure of pitch jumps

appears to be inconsistent with the nonlinear properties of
purely static whistles. During a downward low jump, the pitch
of the preceding phase overlaps in time with the pitch in the
succeeding phase (Figure 3A), often by 5–10 ms. This behavior
is apparently not observed in pitch jumps arising from mode-
locking nonlinearities [17], where changes in pitch are nearly
instantaneous. In a few cases, both tones were present
simultaneously for longer periods, with one frequency
modulated and the other nearly fixed (Figure 3D). In
birdsong, similar observations were used by Greenewalt [18]
to posit two sites of sound production—specifically, that birds
could independently control the left and right sides of their
syrinx. This assertion was later confirmed directly [19].
Examples such as Figure 3D may indicate that mice have at
least two sites of ultrasound production. However, the
strength of this conclusion is tempered by our incomplete

Figure 2. Characterization of Pitch Changes during Syllables

(A) Two examples of syllables, represented in terms of their sonogram
(top member of each pair of panels) and the extracted pitch versus time
(bottom member of pairs).
(B) Plot of pitch at one time point versus the next time point (Dt¼ 1.02
ms). All such pitch pairs in all syllables from a single trial with 750
syllables are shown, representing a total of 31,303 pitch changes.
Particular pitch jumps are placed within the context of their individual
syllables at right (top syllable, 98 ms in duration; bottom syllable, 33 ms
in duration).
(C) Pitch pairs analyzed for single 210-s trials from 45 different mice,
containing in aggregate 15,543 syllables and over 600,000 pitch pairs.
The distribution of pitch pairs is represented as a two-dimensional
histogram; the correspondence between grayscale and number of
observations is indicated in the color bar at right. Polygons define the
clusters corresponding to the three jump types ‘‘u,’’ ‘‘h,’’ and ‘‘d.’’
(D) Numbers of each type of pitch jump per trial (45 mice, one trial each).
DOI: 10.1371/journal.pbio.0030386.g002

Figure 3. Features of Vocalizations Relating to Mechanisms of Sound

Production

(A) Syllable with both a fundamental and first harmonic.
(B) Abundance of frequency (vertical axis is frequency, continued from
[A]) in syllables with (L Jþ) and without (L J�) low jumps.
(C) Average pitch (top) and mean 6 standard deviation log10(power)
(bottom) as a function of time, surrounding a downward low jump (for
syllables with low jumps) or surrounding the upward crossing of 75 kHz
(for syllables without low jumps). Power units are arbitrary but consistent
between syllable types. Color scheme is as in (B).
(D) Syllable showing extensive temporal overlap and independent
frequency modulation among the different notes in the syllable. Syllables
are from the same trial analyzed in Figure 2B.
DOI: 10.1371/journal.pbio.0030386.g003
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knowledge of the nonlinear properties of aerodynamic
whistles [20].

Classifying Syllables into Distinct Types
Because pitch jumps exist in three distinct categories, their

presence or absence serves as a basis for classifying individual
syllables into types. However, it is possible that other features
of these vocalizations might also be a basis for classification.
We therefore analyzed these syllables using multidimensional
scaling, a technique that has been used previously to classify
syllables in birdsong [21]. Multidimensional scaling provides a
method to represent high-dimensional data in lower dimen-
sions; it takes as an input the pairwise ‘‘distance’’ between any
two pitch waveforms, and attempts to faithfully represent the
set of all pairwise distances by proper placement of points,
each representing a single syllable, in two dimensions (Figure
4A). Because inspection suggested that a given syllable type
can be uttered quickly or slowly, we first aligned the pairs by
warping their time axes to place the pitch waveforms in
maximal correspondence with each other (Figure 4A; [22]).
We also used a variant of multidimensional scaling, called
isomap [23], which assembles global information from local
features.

The isomap analysis revealed the presence of several
clusters, indicating distinct syllable types. The most prom-
inent distinction is illustrated in Figure 4B, with an almost
perfect correspondence between cluster membership and the
presence or absence of low-jump transitions. Closer exami-
nation of the cluster representing syllables containing low
jumps reveals further clusters within this overall category. An
example is shown in Figure 4C, in which syllables again group
into types that can be described in terms of their pitch jumps:

one distinct cluster contains almost entirely syllables with an
‘‘h’’ jump followed by a ‘‘d’’ jump. Further projections (not
shown) confirm the presence of additional clusters, which
also correspond to particular sequences of pitch jumps.
Therefore, general classification techniques confirm that

syllables are naturally grouped by their pitch jumps. In fact,
from the isomap analysis we have not found evidence for any
other means to categorize syllables; in all cases we have
examined, clear isomap clusters correspond to types defined
by their sequence of pitch jumps. However, it remains
possible that further subtypes exist, but that the isomap
analysis fails to reveal these clusters. We therefore focused on
the simplest syllable type, with no pitch jumps at all. These
syllables take a variety of forms, some of which are illustrated
in Figure 5A. We noted that many had an oscillatory
appearance. We therefore fit each pitch waveform to a sine
wave, scaling and shifting both the time and frequency axes
for maximal alignment. (We did not permit local time
warping, as used in Figure 4.) The quality of the fit could be
assessed by scaling and shifting each pitch waveform to a
common axis, revealing that the vast majority of these
waveforms lie on top of each other, as well as the underlying
sine wave (Figure 5B). Based on this result, we call syllables
lacking any pitch jumps ‘‘sinusoidal sweeps’’ (SSs).
This analysis suggests that the pitch waveforms of SS

syllables can be accurately described in terms of five variables
(see Materials and Methods): the starting and ending phases,
the rate of oscillation, the center frequency, and the pitch
sine amplitude. Analysis of these parameters reveals that most

Figure 4. Multidimensional Scaling Analysis of Syllable Types

(A) Pairs of pitch waveforms are temporally aligned using dynamic time
warping, and pairwise distances (root mean squared difference) are
computed. Using multidimensional scaling (MDS)/isomap, projections
are found that approximately preserve the distances between pairs.
(B) Isomap analysis of all pitch waveforms in the trial analyzed in Figure
2B. Points are colored according to the presence or absence of low
jumps as in Figure 3B.
(C) A different isomap projection, focusing only on syllables containing
low jumps. Sonograms of representative syllables in both clusters are
shown in the insets. Pitch waveforms are from the same trial analyzed in
Figure 2B.
DOI: 10.1371/journal.pbio.0030386.g004

Figure 5. Pitch Waveforms of Syllables Lacking Jumps

(A) Sonograms of representative syllables, showing a range of oscillatory
behavior.
(B) Overlay of pitch waveforms for all 361 syllables lacking pitch jumps
from the trial analyzed in Figure 2B. Time and frequency axes have been
shifted and globally stretched independently for each syllable to bring
waveforms into maximal overlap with a sine wave. The root mean
squared error in fit to the sine wave is indicated by dashed lines.
(C and D) Histogram of starting (C) and ending (D) phases.
(E) Relationship between the oscillation rate (measured in periods/
millisecond) and amplitude of the best-fit sine wave. Only syllables with
at least 0.3 periods (160/361) are shown; syllables spanning a smaller
fraction of a period do not permit an accurate measurement of
oscillation rate or amplitude.
DOI: 10.1371/journal.pbio.0030386.g005
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SSs begin during (or just before) the rising phase of the sine
wave (Figure 5C), and that a large subset terminate at the
peak of the sine wave (Figure 5D). There is also a strong
inverse relationship between the oscillation rate and the
oscillation amplitude (Figure 5E; see example in bottom two
waveforms in Figure 5A). An analogous inverse relationship
has been found in birdsong, between the trill rate and the
amplitude of pitch variation [24]. In birdsong, this relation-
ship has been interpreted as evidence of a performance limit
in the rate at which frequency can be modulated by changes
in beak conformation. An analogous limit may constrain a
mouse’s ability to modulate the frequency of its whistle.

While syllables are naturally grouped by their pitch jumps,
and indeed we have not found any clear means of classifying
them in a different way, it remains possible that other
groupings exist. In particular, short stretches of a recording
sometimes seem to provide evidence for further subtypes; an
example is shown in the next section (Figure 6A). Table 1
shows a breakdown by prevalence of the most common
syllable types in mouse ultrasonic vocalizations.

Temporal Sequencing of Syllables
In sonograms of mouse vocalizations, complex syllable

sequences can be identified: Figure 6A shows an example of a
phrase in which three ‘‘hdu’’ syllables with descending low-
frequency bands (labeled ‘‘A’’) are followed by six ‘‘hdu’’
syllables with ascending low-frequency bands (labeled ‘‘B’’);
the phrase is finished off by an ‘‘h’’ syllable (almost a SS, but
for the brief grace note), an A-type ‘‘hdu,’’ and an SS (Audio
S3).

An example of a motif can be seen in Figure 6B, in which a
phrase beginning with 2–3 SSs followed by 6–8 ‘‘du’’ syllables
is repeated three times. The consistency of this repeated
sequence, in the context of the whole, is easily noted in pitch-
shifted playbacks (Audio S4).

Finally, there are regularities in the syllable types over
longer time scales. Figure 6C shows an example of a trial that
begins with a series of SSs, has a middle period with many
syllables containing low jumps, and ends with repeated blocks
of ‘‘h’’ syllables.

To determine whether such examples are statistically
significant, we investigated the temporal structure of these
vocalizations quantitatively in terms of two models of syllable
selection. To simplify the analysis, we grouped syllables into
only two categories, depending on whether they did (‘‘1’’) or
did not (‘‘0’’) contain one or more low jumps. We considered
whether individual syllables might be selected randomly. In
the first model, we tested whether the probability of selecting
a syllable was based purely on the prevalence of each type, so
that each syllable is selected independently of all others. In
the second model, the selection probability depended on the
identity of the previous syllable (Figure 7A): from the data, we
calculated the conditional probability pi!j to choose a syllable
of type j after a syllable of type i (i, j ¼ 0, 1). We also used a
third state (a ‘‘gap’’) to represent a silent period lasting more
than 0.5 s, to ensure that the analyzed state transitions
occurred within a phrase. Omitting the gap state from the
model did not qualitatively change the results.

We then examined the prevalence of all possible three-
syllable combinations (see Materials and Methods) in terms of
these two models. As shown in Figure 7B, the first model,
based purely on prevalence, does a poor job of predicting the

distribution of three-syllable combinations (p ,, 10�10). The
transition-probability model provides a much more accurate
description of the temporal structure. However, it, too, is
insufficient (p ’ 10�6) to capture all of the higher-order
structure of these three-syllable sequences. Similar conclu-
sions apply to four- and five-syllable sequences.
Therefore, we find that syllables are not chosen independ-

ently in random order. From examples of raw sonograms (see
Figure 1), it appears that type 1 syllables (those with low
jumps) tend to be grouped in blocks. To examine this aspect
of sequencing, we compared the prevalence of type 1 syllables
against the likelihood that the next syllable after a type 1

Figure 6. Examples of Temporal Regularities in Mouse Song

(A) Sequences of syllables in a phrase. Here, ‘‘hdu’’ syllables have been
classified as ‘‘A’’ or ‘‘B’’ depending on whether the lower frequency band
fell or rose, respectively. SS and ‘‘h’’ (with a brief grace note) are labeled
‘‘C’’.
(B) Example of a phrase repeated three times without interruption in the
original song. The three repeats are shown one above the other, aligned
on the start time for the phrase. See Audio S4 for entire sound recording.
(C) Long time scale changes in syllable type. Syllable type is categorized
by whether low jumps are present (L Jþ) or absent (L J�). Shown is the
number of syllables without low jumps, out of the most recent 20
syllables. Insets contain sonograms from the indicated portions of the
sequence.
(A) and (C) are from the same trial analyzed in Figure 2B; (B) is from a
different mouse.
DOI: 10.1371/journal.pbio.0030386.g006
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would also be a type 1. For the example in Figure 7B, 258/750
(34%) of syllables were of type 1, but the likelihood of a
successive type 1 was much higher (58%). On the basis of
counting statistics (binomial distribution), this difference is
highly significant (p ,, 10�10).

To determine whether this tendency to repeat low-jump
syllables is a universal feature of these vocalizations, we
recorded the vocalizations of 45 socially experienced males
over a period of 3 wk. Over the 3 wk, each animal participated
in nine trials, each 210 s in duration, during which the male
was presented with either a blank (non-odorized) cotton swab
or one with 20 ll of dilute mouse urine (see Materials and
Methods). Of the more than 400 trials, 81 (from a total of 32
different males) contained ten or more examples each of type
0 and 1 syllables, and were tagged as ‘‘qualifying trials.’’ These
qualifying trials contained sufficient numbers of each syllable
type to allow measurement of the syllable prevalence and
transition probabilities. We consistently found that type 1
syllables were more likely following another type 1 (Figure
7C): in 78/81 qualifying trials, type 1 syllables were more likely
following another type 1 than would have been predicted
from their overall prevalence. This demonstrates a strong
tendency for male mice to utter low-jump syllables in blocks.

Similarly, we found that type 1 syllables were very unlikely
to be used at the beginning of a phrase: after a gap, the
likelihood of a type 1 syllable was lower (in 78/81 trials) than
would have been predicted from chance selection of syllable
types (Figure 7C). A related phenomenon is seen in zebra
finch song, in which phrases often begin with an ‘‘introduc-
tory note’’ [25].

We conclude that these vocalizations display strong
temporal regularities. Therefore, mouse ultrasonic vocal-
izations contain the two elements most commonly used to
define song [1,3,13]: the vocalizations contain multiple
syllable types, and these syllables are uttered in regular,
repeated temporal sequences. We therefore label these
vocalizations as songs.

The Songs of Individual Males
In many songbirds, individual males produce a character-

istic song, which in the case of oscine songbirds is learned
from a tutor. To determine whether individual male mice
produce stereotyped songs, we recorded the songs of 45 males

over a period of 3 wk. Seven of the 45 mice had four or more
‘‘qualifying trials’’ (see above) with enough syllabic diversity
to permit analysis.
As shown in Figure 8A, individual mice displayed tenden-

cies to use particular syllable types. For example, mouse 2
tended to utter an abundance of ‘‘du’’ syllables, whereas
mouse 3 used a larger number of ‘‘h’’ syllables. To determine
whether these tendencies were sufficiently reliable to
characterize the song of individual males, we again used
isomap to generate a graphical representation of the syllable
selection probability across mice and trials (see Figure 8B and
Materials and Methods). Importantly, the isomap analysis was
blind to the singer’s identity, so that any differences between
mice were a feature discovered by, rather than imposed upon,
this analysis. As shown in Figure 8B, the choice of syllable
types was fairly consistent over the 3-wk period among trials
from an individual. With a single exception (the mouse
labeled by cyan stars), trials from a given mouse tended to
occupy one of the three arms, or the center, of this
distribution. This tendency to cluster is corroborated by the
fact that the mean ‘‘distance’’ (see Materials and Methods)
between trials from a particular mouse (1.7 6 0.1%, mean 6

standard error of the mean) was significantly smaller than the
mean distance between trials from different mice (2.09 6

0.04%, p , 0.001, one-sided t-test). In a two-alternative

Table 1. The Most Common Syllable Types in Mouse Ultrasonic
Vocalizations, Labeled by Pitch Jump

Syllable

Typea
Number

(Trial A)

Percent

(Trial A)

Percent

(Population)

SS 360 48 70–93

du 97 13 2–15

h 132 18 0–12

d 16 2 1–4

hdu 89 12 0–2

u 5 1 0–2

hd 20 3 0–1

Remainder 31 4 1–4

‘‘Trial A’’ refers to the trial analyzed in Figure 2B. ‘‘Population’’ refers to a single trial from each of 45 males; the

ranges indicate the boundaries of the first and last quartiles.
aPitch jumps are arranged in their temporal order, so that ‘‘hd’’ refers to a syllable with an ‘‘h’’ jump followed by a

‘‘d’’ jump.

DOI: 10.1371/journal.pbio.0030386.t001

Figure 7. Quantitative Modeling of Syllable Temporal Sequences

(A) A three-state Markov model, where the states correspond to syllables
with (‘‘1’’) or without (‘‘0’’) low jumps, and to a gap of greater than 0.5 s
in the sequence. Arrows indicate possible choices for the next state;
transition probabilities are calculated from the observed sequence of
syllables and gaps.
(B) Observed numbers of the eight distinct three-syllable combinations,
and the number expected from two models: ‘‘syllable prevalence’’ picks
the next syllable randomly based on the proportion of each type,
whereas ‘‘transition probability’’ employs the Markov model dia-
grammed in (A).
(C) Comparison of transition probabilities to type 1 syllables with the
prevalence of type 1 syllables. ‘‘Prevalence of 1’’ is n1/(n0þ n1), where ni

is the number of syllables of type i; prevalence of transition g!1 is
calculated as ng!1/(n g!0þn g!1), where ni!j is the number of observed
transitions from state i to state j (g ¼ gap); and prevalence of 1!1 is
n1!1/(n 0!1þn 1!1). Each point represents the results from a single trial,
of 81 qualifying trials (see text).
DOI: 10.1371/journal.pbio.0030386.g007
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forced-choice experiment, individuals could typically be
recognized by their song on the basis of a single trial.
To determine whether these individual differences extend

to the temporal domain, we calculated the syllable transition
probabilities p0!1 and p1!0 from the observed sequence of
syllables. For these seven males, the transition probabilities
for all qualifying trials are plotted in Figure 8. Inspection
suggests that the spread in values for a single male is smaller
than the spread for the population as a whole. To determine
whether this effect is significant, we analyzed the spread of
transition-probability values across trials using a bootstrap
analysis, comparing the spread in the true dataset to
simulated datasets in which the singer’s identity was
scrambled across trials (see Materials and Methods). The
average spread using the correct identities was significantly (p
¼ 0.02, 10,000 bootstraps) less than the spread for scrambled
datasets. Therefore, we conclude that individual males also
have characteristic temporal structure to their songs: across
males, the differences in temporal structure are larger than
the variability across trials by a single male.

Discussion

This study reveals that the ultrasonic vocalizations of the
mouse have the characteristics of song. Qualitatively, this is
apparent directly from playback of pitch-shifted audio
recordings; we have also provided quantitative evidence for
the usage of distinct syllable types arranged in nonrandom,
repeated temporal sequences. These songs satisfy Brought-
on’s sensu stricto definition of song [13], as well as many aspects
of his sensu strictissimo (see Figure 6). While courtship songs
are common among birds, insects, and frogs, song has only
rarely been documented in mammals, and to our knowledge
only in humans, whales, and bats [3,4]. However, some rodent
species display a variety of calls [26] and at least one other, the
rat Dactylomys dactylilnus, utters long sequences of vocalizations
that contain some syllabic diversity [27]. More generally, a
number of Central and South American rodent species
display complex vocalization (L. H. Emmons, personal
communication), but none has been characterized in detail.
However, it seems likely that song is more widely distributed
than we currently appreciate. While the neural and motor
mechanisms used to produce song and other communication
sounds vary across species, recent work has indicated some
commonality at the molecular level: the Foxp2 transcription
factor, expressed in the brain of zebra finches during vocal
learning [28], seems to be required both for mouse ultrasonic
vocalization [29] and normal human speech [30].
Subjectively, mouse song has a diversity and complexity

that exceeds that of most insect and amphibian advertise-
ment songs, which often contain only a single syllable type [1],
perhaps modulated in amplitude and cadence [31]. At the
syllable level, diversity in mouse song comes in two forms,
discrete and continuous. Discrete categories of syllables exist,
as evidenced by the appearance of distinct clusters, by two
criteria: in terms of the sequence of stereotyped frequency
jumps (see Figure 2), and by a comparison of the pitch
waveforms of individual syllables (see Figure 4). Within
syllable types, there also exists considerable continuous
variability (see Figures 5 and 6A). Because of our adoption
of a strict quantitative classification of types, we have not
used this continuous variability to define subtypes. This does

Figure 8. Regularities in the Songs of Individual Mice

All seven mice with four or more qualifying trials (see text) are analyzed.
(A) Syllable usage for three of the more common syllable types for three
different mice. Error bars represent the standard error of the mean across
trials.
(B) Patterns of syllable usage on individual trials across mice. Each point
corresponds to a single trial, where the trials from a particular mouse are
marked with a consistent color and marker. For mice 1–3, colors are
consistent between (A) and (B). Placement of points in the plane reflects
the pairwise ‘‘distance’’ between trials, where that distance measures the
overall differences in percentage of each syllable type (see Materials and
Methods). Projection into two dimensions was performed by isomap.
(C) Temporal regularities in song structure. Transition probabilities for all
qualifying trials grouped by mouse.
DOI: 10.1371/journal.pbio.0030386.g008
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not, however, argue that additional types are not present,
merely that our analysis does not yet support further
subdivision of types. Our quantitative classification scheme
may be stricter than that employed in some analyses. A
comparison of both subjective and quantitative classification
has been carried out for the song of swamp sparrows:
subjective methods [32] were used to classify notes into
either 96 subtypes (which they termed the ‘‘splitter’s
classification’’), or into six major categories (termed the
‘‘lumper’s classification’’). A later quantitative analysis carried
out by the same laboratory, using techniques related to those
employed here, found that notes clustered in general agree-
ment with the major categories identified in the ‘‘lumper’s
classification,’’ with no evidence for further subdivision [21].

The richness and complexity of mouse song appear to
approach that of many songbirds. For example, in the zebra
finch, a widely used model organism for studying song
production, individuals have a number (3–7) of syllable types
[25,33] similar to the number of common types we find in
mice (Table 1). There are other species, for example, canaries,
whose vocal repertoire would appear to exceed that of mice
[34]. Both mice (see Figure 6) and birds [25,33] exhibit regular
temporal structure in their songs, including the production
of repeated themes with sharp transitions between syllable
types. However, mice also exhibit more gradual changes in
syllable structure (see Figure 1). Overall, the tendency to
repeat a syllable, with sharp transitions between types,
appears to be stronger in some birds [34] and whales [3]
than in mice. However, in birds these sharp transitions are a
feature of the adult ‘‘crystallized’’ song; juvenile or isolation-
reared birds are more experimental and less predictable in
terms of the temporal structure of their song [33,35]. Indeed,
our pitch-shifted recordings of mouse song sound similar to
the early ‘‘plastic’’ song of species such as swamp sparrows
(Audio S5). For this reason, any comparison between birds
and mice should consider the development of mouse song
over the lifetime of the animal. Such a study has been
undertaken for properties like mean pitch and cadence over
the first 2 wk of life [12], but is lacking for the more complex
features that compose song.

Because mouse songs are ultrasonic and therefore inaud-
ible to human ears, it is worth noting that laboratory
domestication has probably not acted to preserve the full
richness of mouse song through generations inbreeding. One
study documented considerable variability in the amount of
vocalization by different laboratory strains [36]. In contrast,
domesticated bird populations have been subject to song
selection, and indeed sub-strains such as the Waterschlager
canary have been bred for particular vocal qualities. It
therefore seems possible that wild mice might exhibit
considerably greater diversity and/or more complex structure
in their songs. Future comparisons between the songs of mice
and birds may benefit from using wild mice.

A final question is whether mice, like birds, learn their
songs through experience. The fact that different males have
characteristic syllable usage and temporal structure to their
songs (see Figure 8) is evidence for individual variability in
song. Directly testing the role of experience will require that
the auditory environment during development be explicitly
controlled.

In sum, we have demonstrated that the ultrasonic vocal-
izations of mice are songs, containing different syllable types

sequenced in regular temporal patterns. Different individuals
sing recognizably different songs. These results open new
possibilities for molecular and physiological studies of the
production and perception of song in a well-studied
laboratory organism.

Materials and Methods

Signal acquisition and testing environment. Sounds were recorded
with a microphone and amplifier (1/4’’ microphone, model 4939,
Brüel and Kjær, Nærum, Denmark) with flat frequency response out
to 100 kHz and diminishing sensitivity at higher frequencies. Sounds
were digitized at 250 kHz, 16 bits (National Instruments, Austin,
Texas, United States) and captured to disk within a custom MATLAB-
based program. To attenuate environmental noise, trials were
conducted in a wooden enclosure with a transparent Plexiglas front.
A slow stream of fresh air flowed through each chamber.

Experimental design. Four-week-old males of the B6D2F1 strain
(an F1 cross between C57Bl/6 and DBA2/J) were purchased from
Jackson Laboratory (Bar Harbor, Maine, United States). Mice were
kept on a 12 h/12 h light/dark cycle and were individually housed
starting at 8 wk. Trials were conducted in April and May when the
animals were at least 100 d old. Males were given two 3-min social
experiences per day for 4 d, one to a BALB/c female and one to a
BALB/c castrated male painted with 50 ll of 0.3163 intact BALB/c
male mouse urine [11]. The order of female/male social experiences
was balanced across days.

Animals were acclimatized to the testing environment with three
12–15 min episodes in the testing chamber. A given male was then
tested 1 d/wk over a period of 3 wk. A day’s test consisted of 15 min of
acclimatization followed by three 210-s trials: presentation of an
odorized (20-ll drop of mouse urine, see below) swab, presentation of
a non-odorized (blank) swab, and presentation of a second odorized
swab. For a given mouse, the gap between trials was typically
approximately 20 min. Swabs were introduced through a hole in the
lid of the enclosure at 30 s into the trial; they were removed
immediately after the end of a trial.

Urine stimuli used to trigger vocalizations were either 0.3163male
mouse urine, 0.3163 female mouse urine, or any of nine different
mixtures of male and female mouse urine, where the concentration
of each component was one of 0.3163, 0.13, or 0.03163. The
correlation between stimulus identity and vocal response will be
reported separately.

Data analysis. Stored acoustical waveforms were processed in
MATLAB to compute the sonogram (512 samples/block, half-overlap,
resulting in a time resolution of 1.02 ms and a frequency resolution of
0.98 kHz). Sonograms were thresholded to eliminate the white noise
component of the signal, frequencies outside 25–110 kHz were
truncated, and the resulting sonograms were stored to disk as sparse
complex matrices. This procedure greatly reduced the storage and
processing requirements for later analysis, and also eliminated hiss
when playing back reconstructed acoustical waveforms.

Syllables were identified by computing three time-varying param-
eters from the sparse sonograms: the mean frequency, the ‘‘spectral
purity’’ (fraction of total power concentrated into a single frequency
bin), and the ‘‘spectral discontinuity,’’ which is computed in the
following manner: if p̂iðfjÞ is the normalized power as a function of
frequency fi in the ith time bin, then the spectral discontinuity di
between two neighboring time bins is

di ¼ min
Dj

X

j

jp̂iþ1ðfjþDjÞ � p̂iðfjÞj: ð1Þ

Essentially, d measures the change in the allocation of power across
frequencies between two adjacent time bins; to accommodate the fact
that syllables involve rapid sweeps in frequency, we permit a slight
shift in frequency (Dj up to three bins in either direction, almost 3
kHz) to maximize the alignment between adjacent time bins. Note
that because p̂ is normalized, 0 � di � 2.

These three parameters were median-filtered over 10 ms, and
syllables were identified as periods longer than 5 ms in which mean
frequency exceeded 35 kHz, spectral purity exceeded 0.25, and d was
less than one. Because faint syllables were occasionally interrupted by
brief periods of dropout when the power approached the noise level,
candidate syllables separated by less than 30 ms were merged.

The performance of this algorithm was compared with human
inspection on 50 randomly selected 210-s trials. The algorithm
successfully identified the vast majority (.95%) of human-identified
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syllables, with systematic omission occurring only on the faintest and
briefest syllables. False positives were encountered so rarely (two
clear examples in 10,500 s of recording) that it was difficult to
estimate their frequency, but they were clearly rarer than true
syllables by several orders of magnitude. The algorithm also identified
numerous vocalizations that were initially missed by a human
observer, but which proved upon closer inspection to be correctly
identified (verified graphically and by audible playback). The
algorithm also identified the timing of the beginning and end of
each syllable with high accuracy; occasional discrepancies with a
human observer arose from interfering sounds or when the
beginning or end of the syllable was unusually faint.

Pitch was defined as the dominant frequency as a function of time,
discarding periods of dropout. Note that pitch was occasionally
corrupted by other noises, contributing particularly to background
‘‘hash’’ in Figure 2. The criteria used to define the three pitch jump
types ‘‘d,’’ ‘‘u,’’ and ‘‘h’’ are illustrated in Figure 2C.

Alignment of pairs of pitch waveforms (see Figure 4) was
performed by dynamic time warping [22]. The distance between
any two pitch waveforms was defined as the root mean squared
distance between the aligned waveforms. The isomap analysis of pitch
waveforms used a neighborhood distance criterion of 3 kHz; in Fig-
ure 4 and other such figures, only the largest connected component is
shown.

In fitting SSs to a sine wave (see Figure 5), the sine wave
was described in terms of the following parameters :
yðtÞ ¼ Asinð2pf T þ u0Þ þ �y, where u0 is the starting phase, f is the
rate of oscillation, �y is the center frequency, and A is the pitch sine
amplitude. The total duration of the syllable, T, defines the ending
phase uend by uend ¼ 2pft þ u0.

In analyzing the temporal structure of mouse songs (see Figure 7),
the prevalence of a syllable type was defined as follows: if n0 and n1
are the numbers of type 0 and type 1 syllables, respectively, then the
prevalence of type 0 (within that trial) is defined as p0 ¼ n0=ðn0 þ n1Þ.
The prevalences of other types are defined similarly. The prevalence
of a particular transition, for example, p1!1, is defined analogously in
terms of the numbers of each transition type n1!0 and n1!1 observed
during the trial. In Figure 7B, sequences interrupted by a gap were
discarded. The expected number of a given three-syllable combina-
tion ‘‘abc’’ was calculated as Npapbpc for the ‘‘syllable prevalence’’
model, and as Npapa!bpb!c for the transition-probability model,
where N is the total number of three-syllable combinations.

The analysis of syllable usage across mice (see Figure 8B) defined
the distance between trials in terms of the differences in percentage
utilization of each syllable type. More precisely, if pi1 is the fraction of
syllables of type i used in trial 1, and pi2 is the fraction of the same
syllable type in trial 2, then d12¼ hj pi1� pi2jii. The pairwise distances
were used to project into two dimensions using isomap, much as
schematized for pitch waveforms in Figure 4A (rightmost panel). The
isomap analysis used a local neighborhood definition consisting of
the five closest points; this criterion incorporated all trials into a
single connected component.

The bootstrap analysis of the spread in transition probabilities
across individuals (see Figure 8C) was performed as follows: starting

from the median value (calculated separately for each condition, 0!1
or 1!0, and for each mouse), we calculated the absolute deviation for
each trial. We then calculated the mean absolute deviation across all
mice, conditions, and trials. We compared this mean deviation to the
same quantity calculated from synthesized datasets in which the
singers’ identities were scrambled across trials.

Supporting Information

Audio S1. Slowed (163) Playback of the 2-s Section Expanded in the
Lower Panel of Figure 1

Found at DOI: 10.1371/journal.pbio.0030386.sa001 (977 KB WAV).

Audio S2. Pitch-Shifted (163) Playback of the 2-s Section Expanded in
the Lower Panel of Figure 1

Found at DOI: 10.1371/journal.pbio.0030386.sa002 (61 KB WAV).

Audio S3. Pitch-Shifted (163) Playback of the Phrase in Figure 6A

Found at DOI: 10.1371/journal.pbio.0030386.sa003 (48 KB WAV).

Audio S4. Pitch-Shifted (163) Playback of a Longer Segment of Song

The triply repeated phrase shown in Figure 6B begins at 40 s into the
recording.

Found at DOI: 10.1371/journal.pbio.0030386.sa004 (1.6 MB WAV).

Audio S5. Recording of Juvenile Swamp Sparrow Song

For comparison between bird and mouse songs. Courtesy of Peter
Marler.

Found at DOI: 10.1371/journal.pbio.0030386.sa005 (2.4 MB WAV).
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