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Abstract

Reliable and accurate veri!cation of people is extremely important in a number of business transactions as well as access to
privileged information. Automatic veri!cation methods based on physical biometric characteristics such as !ngerprint or iris
can provide positive veri!cation with a very high accuracy. However, the biometrics-based methods assume that the physical
characteristics of an individual (as captured by a sensor) used for veri!cation are su0ciently unique to distinguish one person
from another. Identical twins have the closest genetics-based relationship and, therefore, the maximum similarity between
!ngerprints is expected to be found among identical twins. We show that a state-of-the-art automatic !ngerprint veri!cation
system can successfully distinguish identical twins though with a slightly lower accuracy than nontwins. ? 2002 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Biometrics, which refers to automatic identi!cation of
people based on their physical or behavioral characteristics
is inherently more reliable than traditional knowledge-based
(password) or token-based (access card) methods of iden-
ti!cation. Traditional methods are prone to fraud because
tokens may be stolen and passwords may be guessed. On
the other hand, biological characteristics cannot be forgot-
ten, easily shared or misplaced. Moreover, biometrics-based
authentication requires that the person to be authenticated
be present at the point of authentication to provide his
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biometric measurement. While the traditional veri!cation
methods can establish an absolute “yes=no” veri!cation (ei-
ther the password provided is correct or it is incorrect), bio-
metrics, on the other hand, determines the degree of “similar-
ity” between the person to be authenticated and the claimed
identity. It has been shown that various biometric charac-
teristics are able to establish a “positive veri!cation” with a
very high level of con!dence.

A number of veri!cation systems based on diEerent bio-
metric characteristics have been developed [1]. For a physi-
cal or behavioral characteristics to be useful for veri!cation
in an automatic system, it must have the following proper-
ties: (i) universality (everyone possesses the characteristic),
(ii) permanence (the characteristic remains invariant over
life time), (iii) collectible (the characteristic is easy to cap-
ture), and (iv) distinctiveness (the characteristic is diEerent
for everyone). As the biometrics-based veri!cation is be-
coming more pervasive, there is a growing interest [2,3] in
determining the distinctiveness of biometrics characteristics
in order to establish the performance limits of such systems.

The distinguishing nature of physical characteristics
of a person is due to both the inherent individual genetic
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diversity within the human population as well as the random
processes aEecting the development of the embryo [4,5].
Since two individuals can be arbitrarily close with respect to
their genetic constitution (e.g., identical twins, the only other
genetic relationship that may come close to identical twins
is the possibility of human clones. Cloning is a method of
producing a baby that has almost the same genetic makeup
as its parent [6]), a pessimistic evaluation of identity dis-
crimination based on biometrics may need to rely solely on
an assessment of diversity in the traits due to random process
aEecting human development. Such an assessment strategy
would necessarily rely on biometric samples from individ-
uals who are identical=similar in their genetic constitution.

The extent of variation in a physical trait due to random
development process diEers from trait to trait. By de!ni-
tion, identical twins cannot be distinguished based on DNA.
Typically, most of the physical characteristics such as body
type, voice, and face are very similar for identical twins and
automatic veri!cation based on face and hand geometry will
fail to distinguish them. It is, however, claimed that iden-
tical twins can be distinguished based on their !ngerprints,
retina, thermogram, or iris patterns (although, there are con-
Jicting reports on how subtle this distinguishing information
is [2]). The focus of this study is to quantitatively determine
the similarity of !ngerprints in identical twins. We further
attempt to assess the impact of this similarity on the perfor-
mance of automatic !ngerprint-based veri!cation systems.
Since both, human iris and angiogenesis follow a develop-
ment pattern similar to !ngerprints, we believe the results of
this study may be qualitatively applicable to other biometric
identi!ers such as iris, retina and thermogram (thermogram
and retina based person veri!cation is based on features ex-
tracted from the underlying vasculature) patterns as well.

2. Fingerprint formation

Fingerprint is the pattern of ridges on the tip of our !n-
gers. It is one of the most mature biometric technologies
and is considered a legitimate proof of evidence in courts
of law all over the world. Fingerprints are fully formed at
about 7 months of fetus development and !nger ridge con-
!gurations do not change throughout the life except due to
accidents such as bruises and cuts on the !nger tips. Finger-
prints are routinely used by forensic science labs and identi-
!cation units for criminal investigations. More recently, an
increasing number of civilian and commercial applications
(e.g., welfare disbursement, cellular phone access, laptop
computer log-in) are either using or actively considering to
use !ngerprint-based veri!cation because of the availability
of inexpensive and compact solid state scanners [7] as well
as its superior and proven matching performance over other
biometric technologies.

Biological organisms, in general, are the consequence of
the interaction of genes and environment. It is assumed that
the phenotype is uniquely determined by the interaction of

a speci!c genotype and a speci!c environment. Physical
appearance and !ngerprints are, in general, a part of an
individual’s phenotype. In the case of !ngerprints, the genes
determine the general characteristics of the pattern. Finger-
print formation is similar to the growth of capillaries and
blood vessels in angiogenesis [8]. The general characteris-
tics of the !ngerprint emerge as the skin on the !ngertip
begins to diEerentiate. However, the Jow of amniotic Juids
around the fetus and its position in the uterus changes during
the diEerentiation process. Thus, the cells on the !ngertip
grow in a microenvironment that is slightly diEerent from
hand to hand and !nger to !nger. The !ner details of the
!ngerprints are determined by this changing microenviron-
ment. A small diEerence in microenvironment is ampli!ed
by the diEerentiation process of the cells. There are so many
variations during the formation of !ngerprints that it would
be virtually impossible for two !ngerprints to be alike. But
since the !ngerprints are diEerentiated from the same genes,
they will not be totally random patterns either. We could
say that the !ngerprint formation process is a chaotic system
rather than a random one [8].

How does one assess whether two !ngerprints are identi-
cal? In order to reliably establish whether two prints came
from the same !nger or diEerent !ngers, it is necessary to
capture some invariant representation (features) of the !n-
gerprints: the features which over a life-time will continue
to remain unaltered irrespective of the cuts and bruises, the
orientation of the print with respect to the medium of the
capture, occlusion of a small part of the !nger, the imaging
technology used to acquire the !ngerprint from the !nger,
or the elastic distortion of the !nger during the acquisition
of the print.

Several representations have been used to assess the !n-
gerprint similarity. At a coarse level, a pattern class simi-
larity (Level 1 information) depends upon categorization of
the overall !ngerprint pattern into a small number of classes;
the !ve major classes are: whorl, right loop, left loop, arch,
and tented arch. At a !ner level, !ngers can also be dis-
tinguished based on their ridge thickness, ridge separation,
or ridge depths. Ridge count feature measures the number
of ridges between two salient points (e.g., core and delta)
on a !nger. The most widely used measure of !ngerprint
similarity is based on minute details (minutiae [10] (Level
2 information)) of the ridges: if the relative con!guration
(e.g., placement and orientation) of ridge anomalies (end-
ings and bifurcations) of two !ngers is similar, then their
minutiae-based similarity is high (see, Fig. 1). The primary
focus of our work is the !ngerprint similarity based on the
!ngerprint minutiae information. In addition to the !nger-
print features described in this section, location and densities
of the minute sweat pores (Level 3 information) have also
been found to contain information helpful for distinguishing
individuals [11].

An important question in !ngerprint matching is: which
characteristics of the !ngerprints are inherited? A number of
studies have shown a signi!cant correlation in the !ngerprint
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Fig. 1. Relative con!guration of ridge endings and branchings between two impressions of the same !nger. The minutiae were automatically
extracted using the algorithm in [9] and the correspondences were manually determined for illustration.

class (i.e., whorl, right loop, left loop, arch, tented arch)
of identical twin !ngers; correlation based on other generic
attributes of the !ngerprint such as ridge count, ridge width,
ridge separation, and ridge depth has also been found to
be signi!cant in identical twins. In dermatoglyphics studies,
the maximum generic diEerence between !ngerprints has
been found among individuals of diEerent races. Unrelated
persons of the same race have very little generic similarity
in their !ngerprints, parent and child have some generic
similarity as they share half the genes, siblings have more
similarity and the maximum generic similarity is observed
in the monozygotic (identical) twins, which is the closest
genetic relationship [12].

Monozygotic twins are a consequence of division of a
single fertilized egg into two embryos. Thus, they have ex-
actly identical DNA except for the generally undetectable
micromutations that begin as soon as the cell starts dividing.
Fingerprints of identical twins start their development from
the same DNA, so they show considerable generic similarity
[13]. However, identical twins are situated in diEerent parts
of the womb during development, so each fetus encounters
slightly diEerent intrauterine forces from their siblings. As a
result, !ngerprints of identical twins have diEerent microde-
tails which can be used for identi!cation purposes [12]. It
is claimed that a trained expert can usually diEerentiate be-
tween the !ngerprints of identical twins based on the minu-
tiae (dis)similarity [12]. Thus, there is anecdotal evidence
that minutiae con!gurations are diEerent in identical twins
but to our knowledge, no one has systematically investigated
or quanti!ed how minutiae information in identical twins is
(un)related in the context of an automatic !ngerprint-based

authentication system. Daugman [14] claims that left and
right irises of the same person while genetically similar
can be distinguished by an automatic system even though
the machine representations of iris (IrisCode) of genetically
similar irises have a smaller degree of freedom as compared
to unrelated irises. Daugman evaluated the performance of
an iris-based biometric system on genetically identical irises
(left and right irises of the same person). The multiple !n-
gerprints of a single individual also share common genetic
information and a very common development environment.
However, this paper focuses on analyzing the similarity in
!ngerprint minutiae patterns in identical twin !ngers.

Using an automatic !ngerprint biometric system [9], we
study the (dis)similarity between identical twin !ngerprints
and compare it to the (dis)similarity between two arbitrary
!ngerprints. We have con!rmed the claim that the identi-
cal twin !ngerprints have a large class correlation, i.e., if
one of the identical twin’s !ngerprint is a whorl then it is
very likely that the other twin’s !ngerprint will also be of
whorl type. We also analyze the correlation between the
!ngerprint class and the minutiae matching score between
two randomly chosen !ngerprints. Finally, we stipulate the
implications of the extent of the similarity in identical twin
!ngerprints to the performance of a !ngerprint-based person
veri!cation system.

3. Automatic �ngerprint identi�cation

Fingerprints are represented as a set of points, where
each point corresponds to a minutia in the !ngerprint. Each
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Fig. 2. Minutiae extraction for twins. (a) and (b) are !ngerprint images of an identical twin and his=her sibling while the !ngerprint in (c)
is from another person. (d), (e), and (f) are the minutiae extracted from (a), (b), and (c), respectively using the extraction algorithm in [9].

minutia is characterized by its location, the direction of the
ridge on which it resides, and its type (ending, bifurcation,
island, etc.). A typical minutiae extraction algorithm !rst
locates the !ngerprint ridges and then extracts the minutiae
as singular points on the thinned ridge map. In practice, it is
not easy for automatic systems to accurately locate ridges in
a !ngerprint image. The performance of the ridge location
algorithm depends heavily on the quality of the !ngerprint
image. Due to a number of factors such as aberrant forma-
tions of epidermal ridges in !ngerprints, postnatal marks,

occupational marks, problems with acquisition devices, etc.,
!ngerprint images may not always have well-de!ned ridge
structures. Fig. 2 shows the extracted minutiae from some
example !ngerprints.

Given two representations (minutiae sets), the matching
algorithm determines whether or not the associated !nger-
prints represent the same !nger. The matching algorithm in
[9] transforms the two minutiae sets to a common frame of
reference by an alignment procedure based on translation
and rotation (see Fig. 3). The translation and rotation esti-
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Fig. 3. Minutiae matching for (a) twin–nontwin (matching of Figs. 2(e) and (f), matching score = 3 on a scale of 0–999) and (b) twin–twin
(matching of Figs. 2(d) and (e), matching score = 38 on a scale of 0–999). The “matched” minutiae pairs are shown by bounding boxes.

mation is based on properties of the ridge segment associ-
ated with a minutia. After the transformation, the matching
score is calculated as a function of the number of “matched”
(within a tolerance) and “unmatched” minutiae and then
scaled to a number between 0 and 999. If this matching
score is greater than a prespeci!ed threshold, the veri!ca-
tion module accepts the claim that the two !ngerprints are
impressions of the same !nger, and rejects the claim other-
wise.

4. Experimental results

An arbitrary subset of the rolled identical twin !nger-
prints collected for the National Heart, Lung, and Blood
Institute (NHLBI) twin study [15,16] was used in our
experiments. The !ngerprints were acquired using the
methods documented in [17]. The !ngerprints of the index
!ngers of 100 pairs of identical twins were scanned using an
IBM Jatbed color scanner in grayscale mode at 500 dpi res-
olution. Some of the original !ngerprints were in ink while
others were taken on a sensitized paper with ink-less Juid.
The latter tend to fade with time. Due to diEerences in paper
quality and degradation of the prints over time, several of
these !ngerprints are of poor quality. We rejected some of
the very poor quality !ngerprints and used only 94 pairs of
identical twin !ngerprints in our study. See Figs. 2(a) and
(b) for examples of !ngerprint images in our twin database.

To study the similarity of identical twins !ngerprints, we
matched every !ngerprint in our twin database with every
other !ngerprint. See Fig. 2 for examples of minutiae ex-
traction for twin !ngerprints. Figs. 3(a), 3(b), and 4 show
examples of matching twin–nontwin !ngerprints, twin–twin
!ngerprints, and two impressions of the same !nger of a
person, respectively. In Fig. 5(a), the dash line shows the
twin–twin imposter distribution of matching scores com-

puted by matching a !ngerprint with his=her identical twin
sibling (twin–twin match), while the solid line shows the
twin–nontwin imposter distribution of matching scores be-
tween a person’s !ngerprint and everyone else except his=her
twin (twin–nontwin match). The twin–twin imposter distri-
bution was estimated using 188 (94×2) matchings between
the 94 twin !ngerprint pairs in our identical twin database
whereas the twin–nontwin imposter distribution was esti-
mated using 17; 484 (94 × 93 × 2) matchings. Fig. 5(a)
shows the twin–twin imposter distribution which is slightly
shifted to the right of the twin–nontwin distribution, indi-
cating that twin–twin !ngerprints are generally more similar
than twin–nontwin !ngerprints. The twin–twin and twin–
nontwin distributions are found to be signi!cantly diEer-
ent (with 99:99% con!dence level) using the Kolmogorov–
Smirnov test [18].

A genuine distribution of matching scores is estimated
by matching multiple !ngerprint images of the same !nger.
Since we had access to only a single impression of the !n-
gers in our twin database, we had to synthesize the genuine
distribution for twin–twin matching. Since the identical twin
!ngerprints in our database were obtained by rolling inked
!ngers of the subjects by fairly experienced !nger-printers,
we expect the genuine distribution characteristics of the twin
database to closely correspond to that obtained from a stan-
dard public domain !ngerprint database (e.g., NIST9 CD
No. 1) [19]. This database, consisting of 1800 !ngerprint
images taken from 900 independent !ngers, two impressions
per !nger, was used to compute the genuine distribution.
This genuine distribution along with the two “imposter” dis-
tributions in Fig. 5(a) were used to generate the receiver op-
erating characteristics (ROC) [20,21] curves shown in Fig.
5(b). Fig. 5(b) shows that, due to the inherent similarity
of twin !ngerprints, the ability of the system to distinguish
identical twins is lower than its ability to distinguish twin–
nontwin pairs. However, contrary to claims made in popular
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Fig. 4. Minutiae matching for two impressions of the same !nger shown in Figs. 6(a) and (b) (matching score = 487 on a scale of 0–999).
The “matched” minutiae pairs are shown by bounding boxes.

press [2], the automatic !ngerprint veri!cation system can
still be used to distinguish between identical twins without
a drastic degradation in performance. See Fig. 6 for an il-
lustration. Table 1 shows the trade-oE between FARs and
FRRs (FAR is also known as false match rate (FMR) and
FRR is also known as false nonmatch rate (FNMR) in bio-
metrics [20].) of twin–twin and twin–nontwin matchings for
various threshold values on the matching score.

To quantify the performance degradation of a !ngerprint
veri!cation system due to the inherent twin–twin similar-
ity in !ngerprints, we assume that twin–nontwin imposter
distribution is representative of the matchings between un-
related people (nontwins). Suppose a !ngerprint veri!ca-
tion system was set to operate at a decision threshold of
T to satisfy the speci!ed FAR requirements. Now, suppose
that identical twins use this automatic !ngerprint veri!ca-
tion system. Since the twin–twin imposter distribution in
Fig. 5(a) is slightly to the right of the twin–nontwin distribu-
tion, this will increase the FAR of the system but will have
no eEect on the FRR. The FAR for identical twins is gen-
erally 2–6% higher than twin–nontwin matchings depend-
ing on the system operating point (threshold values). The
quantitative implication of this in the performance of a !n-
gerprint matching system is as follows. Suppose our system
is developed (trained) on !ngerprints of unrelated people
(nontwins) and is set to operate at, say, a threshold of 20
which corresponds to an FAR of ∼ 1% (see Table 1). Now,

if 1 million unrelated people (nontwins) used the system,
then, based on our empirical distributions, 10; 000 people
will be falsely accepted while 22; 000 people will be falsely
rejected. However, if 500; 000 identical twin pairs (1 mil-
lion twins) used the system operating at the same threshold
of 20, then 48; 000 of these will be falsely accepted while
22; 000 people will be falsely rejected. Notice the increase
in the false acceptance rate for twins.

To safeguard against “twin fraud”, we can set the oper-
ating point of our system pessimistically at a threshold of
26 which corresponds to an FAR of ∼ 1% for twin–twin
matchings and an FAR of ∼ 0:3% for twin–nontwin match-
ings. This raises the FRR to ∼ 3:5% as opposed to 2:2%
when operating at a threshold of 20. This means that in
the worst case scenario (when all the people accessing the
system are identical twins), the system will falsely accept
10,000 people out of one million at the expense of falsely
rejecting 35,000 people. In the best case (when there are
no twins accessing the system), only 3000 people will be
falsely accepted while falsely rejecting 35; 000 people. In
practice, the system will falsely accept between 3000 and
10; 000 people (between 0:3% and 1% ), depending upon
the fraction of twins in our sample population of 1 million
while falsely rejecting 35; 000 people.

Dermatoglyphics studies have suggested that there is a
high class=type similarity in the !ngerprints of identical
twins. To con!rm this claim, we manually classi!ed the 94
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Fig. 5. (a) Distribution of matching scores for twin–twin imposter, twin–nontwin imposter, and random–random imposter (random 2D point
patterns are matched with other random 2D point patterns) matchings. (b) ROC curves for twin–twin and twin–nontwin minutiae pattern
matchings.

pairs of identical twin !ngerprints in our database into !ve
classes (right loop, left loop, whorl, arch, and tented arch).
The class correlation between the index !ngers of identi-
cal twins (fraction of identical twin pairs whose index !n-
gerprints have the same class label) is found to be 0:775
(based on Table 2). If we randomly choose two index !n-
gerprint images from a large database, the probability that

these two !ngerprints will have the same class label is equal
to p2

W + p2
R + p

2
L + p

2
A + p

2
T , i.e., 0:2718, where pW , pR,

pL, pA, and pT , are the probabilities of a !ngerprint cho-
sen at random belonging to the class of whorl, right loop,
left loop, arch, and tented arch, respectively. Thus, there is
only 0:2718 chance that two randomly chosen index !ngers
will have the same type which is much lower than the 0:775
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Fig. 6. Fingerprint images of identical twin sisters captured using an optical scanner from Digital Biometrics Inc., (a) and (b) are two
impressions of the same !nger of one twin and (c) and (d) are two impressions of the corresponding !nger of her sibling. Matching scores
between (a) and (b) is 487, and between (c) and (d) is 510. The matching score between (a) and (c) is 24, and the matching score between
(b) and (d) is 4. The !ngerprints of both the twins here have the same type (right loop) and look similar to untrained eyes. Fingerprint
experts, as well as our automatic !ngerprint veri!cation system can, however, easily diEerentiate the twins.

Table 1
False accept and false reject rates with diEerent threshold values
for the twin–twin and twin–nontwin matchings in the identical twin
database

Threshold FRR FAR FAR
(twin–twin) (twin–nontwin)

(%) (%) (%)

16 1.05 8.51 2.20
20 2.20 4.79 1.02
24 3.00 2.13 0.48
26 3.49 1.06 0.29

chance that the !ngerprints of two identical twins will have
the same class label.

We believe that the global similarity of !ngerprints
(shown as class=type similarity) is, to a certain extent, re-
sponsible for the local similarity (shown in the matching

Table 2
The natural proportion of occurrence of each of the !ve major
!ngerprint classes in the index !nger (based on an unpublished
1995 report by Frank Torpay of Mitre Corporation using data ex-
tracted from the FBI’s Identi!cation Division Automated Services
database of 22; 000; 000 human-classi!ed !ngerprints)

Whorl (W) Right loop Left loop Arch Tented arch
(R) (L) (A) (T)

(pW ) (pR) (pL) (pA) (pT )

0.3252 0.3638 0.1703 0.0616 0.0779

performance). Consider two !ngerprints that belong to the
same class (e.g., right loop). Since the minutiae can exist
only along the ridges (although at random locations), the
matching score between these two !ngerprints is likely
to be higher than the matching score between two sets of
random point patterns. To study the correlation of class
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Fig. 7. EEect of !ngerprint class type on the matching score.

Table 3
False accept and false reject rates with diEerent threshold values
for the within-class and between-class matchings in the NIST4
database

Threshold FRR FAR FAR
(%) (within-class) (between-class)

(%) (%)

16 1.05 10.65 6.11
20 2.20 6.30 3.24
24 3.00 3.83 1.82
26 3.49 3.01 1.39

information with the matching performance, we used the
NIST4 database [22] which has 4000 !ngerprint images
collected from 2000 independent !ngers with 800 !nger-
prints from each of the !ve classes. The ground truth about
the !ngerprint class was marked in the NIST4 database by
an expert at NIST.

The between-class and within-class distributions were
computed from about 130; 000 matchings each by matching
the 3600 good quality !ngerprints in the NIST4 database
with each other. The genuine distribution computed from the
NIST9 database was used here so that the FRRs could be di-
rectly compared with Table 1. The ROCs for between-class
and within-class matchings are shown in Fig. 7 and Table 3
shows the corresponding trade-oE between FARs and FRRs
for diEerent thresholds on the matching score. Note that the
matching performance is better for !ngerprints belonging
to diEerent classes compared to !ngerprint belonging to the
same class. Also, the magnitude of the shift between the

two ROCs in Fig. 7 is of the same order of magnitude as
the one manifested in Fig. 5(b) (also compare Table 3 with
Table 1). Thus, we have shown that the minutiae-based
similarity of identical twin !ngerprints, is of the same order
as the similarity between unrelated people who have the
same !ngerprint class label. Hence, we conclude that
the larger similarity observed in identical twins is due to
the high class correlation in their !ngerprint types.

5. Conclusions

One out of every 80 births results in twins and one-third of
all the twins are monozygotic (identical) twins [14]. Some
identical twins have been reported to be involved in fraud,
which can be called as “twin fraud”, since people mistake
the identities of the identical twins. The childhood mischief
by the identical twins of switching places on their teachers
and taking each other’s exams may grow into serious crimi-
nal activities in adulthood such as buying a single insurance
for identical twin siblings or claiming welfare bene!ts twice
when only one sibling is unemployed. There have been cases
reported where an identical twin was sentenced for a crime
that was committed by his=her sibling [2]. Fertility treat-
ments have resulted in an increase in the identical twin birth
rate (in fact, according to a study by Robert Derom [2], the
identical twin birth rate is about twice as high for women
who use fertility drugs). Further, because of the medical ad-
vances in the treatment of premature babies, population of
identical twins is increasing.

We have shown that even though identical twin !n-
gerprints have large class correlation, they can still be
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distinguished using a minutiae-based automatic !ngerprint
veri!cation system though with slightly lower accuracy
than nontwins. Our results suggest that the marginal degra-
dation in performance may be related to the dependence of
the minutiae distribution on !ngerprint class.

What are the implications of our empirical results in
person veri!cation applications? In authentication applica-
tions, marginal degradation in accuracy performance will
have almost no eEect on “evil” twins posing as impostors.
In large scale !ngerprint based veri!cation applications, a
small degradation in authentication accuracy may imply a
signi!cant degradation in the recognition accuracy. Further,
if the degradation in the performance is dependent on the
class correlation which in turn depends on the genetic con-
stitution (as suggested by the dermatoglyphics studies), it
may imply that bene!ts reaped by composition of ten-!nger
information may have been overestimated in the literature.
Further, the magnitude of performance degradation of a
minutiae-based !ngerprint matcher may depend upon the ge-
netic relationship among a target population corpus. Both of
these eEects may need further investigation; more research
is necessary for class-independent minutiae-based matchers.
Since the accuracy performance of a minutiae-based !nger-
print matcher degrades with genetic similarity in the popu-
lation, alternative representations of !ngerprints should be
explored that can be combined with the minutiae representa-
tions to yield a more accurate automatic !ngerprint matching
system [23]. Finally, !ngerprint classi!cation applications
used for the binning of population to increase e0ciency of
!ngerprint-based search may not be very e0cient in genet-
ically related population.

6. Summary

Although, the word “!ngerprint” is popularly perceived
synonymous with individuality, uniqueness of !ngerprints
is not a fact but an empirical observation. With the stipula-
tion of widespread use of !ngerprints, however, there is a
rightfully growing public concern about the basis underlying
individuality of !ngerprint. Lending erroneous legitimacy
to these observations will have disastrous consequences, es-
pecially, if !ngerprints (and other biometric identi!ers) be
ubiquitously used to establish positive person identi!cation
for reasons of e0ciency, convenience, and reliability to !ght
growing identity fraud in the society. Further, the increas-
ingly automated !ngerprint matching systems use not the en-
tire discriminatory information in the !ngerprints, but only
a parsimonious representation extracted by a machine unsu-
pervised by human expert.

The magnitude of the distinctive information in a !nger-
print is also being a suspect recently. A leading pop article
[24] states that “the !ngerprints may be unique in the sense
that, as Leibniz argued, all natural objects can be diEerenti-
ated if examined in enough detail”. Cole further argues that
uniqueness may be valid when entire prints are compared

but not for prints depicting small portions of a !nger; the
print size is even more signi!cant in the view of the newer
chip-based !ngerprint sensors which cover a small portion
of the !nger (unlike the nail-to-nail rolled inked !ngerprints
used in many criminal !ngerprint investigations). A recent
WSJ article [2] speculates that identical twin !ngerprints
are 95% similar. The same article also quotes a security ex-
pert stating “identical twins would probably pass most of
(biometric which includes !ngerprint) security technology”.
Finally, a recent (1993) US Supreme Court Daubert vs
Merrell hearing started a closer scrutiny of the UK Home
O0ce observation in 1893 that !ngerprints are unique. Al-
though the supreme court conceded that !ngerprints are
unique, it subsequently sought (through DOJ) to sponsor a
systematic study to examine a sound and indisputable sci-
enti!c basis of the !ngerprint individuality information.

Thus, uniqueness of !ngerprints is not a bygone conclu-
sion. Nor this empirical observation has been systematically
studied. Obviously, there is an enormous public interest in
this crucial and contemporary topic. We attempt to explore
answers to some of these !ngerprint individuality questions.
More speci!cally, the objective of our work is to examine
the !ngerprint individuality information in the context of an
automated !ngerprint matching system. We accomplish this
objective by considering a worst case situation of monozy-
gotic twin !ngerprints. Further, we validate our results by
estimating the statistical signi!cance of our results and by
forwarding the evidence that the correlation in !ngerprint
minutiae representations from identical twin !ngers is due
to the !ngerprint class correlation in identical twin !nger-
prints (which has been previously studied). Finally, we lay
out the implications of our results in terms of identity ver-
i!cation and identi!cation systems. To our knowledge, all
these aspects of !ngerprint individuality information have
never been examined before.

Acknowledgements

We would like to thank Dr. T. Reed of Indiana Univer-
sity Purdue University, Indianapolis for providing the twin
database. We would like to thank Dr. J.L. Wayman, Director
of the U.S. National Biometric Test Center, San Jose State
University and Professor R.E. Gaensslen, University of Illi-
nois, Chicago for their many useful suggestions in preparing
this manuscript.

References

[1] A.K. Jain, R. Bolle, S. Pankanti (Eds.), BIOMETRICS:
Personal Identi!cation in Networked Society, Kluwer, New
York, 1999.

[2] D. Costello, Families: the perfect deception: identical twins,
Wall Street J. Feb. 12th 1999.

[3] Problem identi!cations, http://onin.com/fp/problemidents.html

http://onin.com/fp/problemidents.


A.K. Jain et al. / Pattern Recognition 35 (2002) 2653–2663 2663

[4] R.G. Steen, DNA and Destiny: Nature and Nurture in Human
Behavior, Plenum Press, New York, 1996.

[5] N.L. Segal, Entwined Lives: Twins and What They Tell Us
About Human Behavior, Plume, New York, 2000.

[6] M.D. Eibert, Human Cloning: Myths, Medical Bene!ts and
Constitutional Rights, U & I Magazine, 1999, available at http:
//www.humancloning.org/users/infertil/humancloning.htm

[7] Veridicom, Inc., Fingerprint Authentication Technology
Enabling Secure E-commerce, http://www.veridicom.com/

[8] E.P. Richards, Phenotype vs. Genotype: Why Identical
Twins Have DiEerent Fingerprints? http://www.forensic-
evidence.com/site/ID Twins.html

[9] A.K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity
authentication system using !ngerprints, Proc. IEEE 85 (9)
(1997) 1365–1388.

[10] F. Galton, Finger Prints, McMillan, London, 1892.
[11] A.R. Roddy, J.D. Stosz, Fingerprint features-statistical

analysis and system performance estimates, Proc. IEEE 85
(9) (1997) 1390–1421.

[12] H. Cummins, C. Midlo, Fingerprints, Palms and Soles: An
Introduction to Dermatoglyphics, Dover Publications Inc.,
New York, 1961.

[13] W. Bodmer, R. McKie, The Book of Man: The Quest to
Discover our Genetic Heritage, Viking, 1994.

[14] J. Daugman, Recognizing persons by their Iris patterns, in:
A.K. Jain, R. Bolle, S. Pankanti (Eds.), BIOMETRICS:
Personal Identi!cation in Networked Society, Kluwer
Academic Publishers, New York, 1999.

[15] E. Splitz, R. Mountier, T. Reed, M.C. Busnel, C. Marchaland,
P.L. Roubertoux, M. Carlier, Comparative diagnoses of
twin zygosity by SSLP variant analysis, questionnaire, and

dermatoglyphics analysis, Behav. Genet. 26 (1) (1996)
56–63.

[16] T. Reed, D. Carmelli, R.H. Rosenman, EEects of placentation
on selected type a behaviors in adult males, in the National
Heart, Lung, and Blood Institute (NHLBI) twin study, Behav.
Genet. 21 (1991) 9–19.

[17] T. Reed, R. Meier, Taking dermatoglyphic prints:
a self-instruction manual, Am. Dermatoglyphics Assoc.
Newslett. 9 (Supp.) (1990) 18.

[18] W.H. Press, S.A. Teukolsky, W.T. Vellerling, B.P. Flannery,
Numerical Recipes in C, The Art of Scienti!c Computing,
Cambridge University Press, Cambridge, 1992.

[19] NIST Special Database 9. NIST 8-bit Gray Scale Images
of Fingerprint Image Groups (FIGS), http://www.nist.gov/
srd/nistsd9.htm

[20] UK Biometric Working Group, Best Practices in Testing and
Reporting Biometric Device Performance, Version 1.0, March
2000. http://www.afb.org.uk/bwg/bestprac10.pdf

[21] J.L. Wayman, Multi-!nger penetration rate and ROC
variability for automatic !ngerprint identi!cation systems,
Technical Report, San Jose State University, 1999.

[22] NIST Special Database 4. NIST 8-bit Gray Scale Images
of Fingerprint Image Groups (FIGS), http://www.nist.gov/
srd/nistsd4.htm

[23] A.K. Jain, S. Prabhakar, L. Hong, S. Pankanti,
Filterbank-based Fingerprint Matching, IEEE Trans. Image
Process. 9 (5) (2000) 846–859.

[24] Simon Cole, The myth of !ngerprints: A Forensic Science
Stands Trial, http://www.linguafranca.com/print/0011/
feature !ngerprints.html, 2000

About the Author—ANIL K. JAIN is a University Distinguished Professor in the Department of Computer Science and Engineering at
Michigan State University. He was the Department Chair between 1995–1999. He has made signi!cant contributions and published a large
number of papers on the following topics: statistical pattern recognition, exploratory pattern analysis, neural networks, Markov random !elds,
texture analysis, interpretation of range images, 3D object recognition, document image analysis and biometric authentication. Several of
his papers have been reprinted in edited volumes on image processing and pattern recognition. He received the best paper awards in 1987
and 1991, and received certi!cates for outstanding contributions in 1976, 1979, 1992, 1997 and 1998 from the Pattern Recognition Society.
He also received the 1996 IEEE Transactions on Neural Networks Outstanding Paper Award. He is a fellow of the IEEE and International
Association of Pattern Recognition (IAPR). He received a Fulbright Research Award in 1998 and a Guggenheim fellowship in 2001.

About the Author—SALIL PRABHAKAR was born in Pilani, Rajasthan, India, in 1974. He received his B.Tech degree in Computer
Science and Engineering from Institute of Technology, Banaras Hindu University, Varanasi, India, in 1996. During 1996–1997 he worked
with Tata Information Systems Ltd. (now IBM Global Services India Pvt. Ltd.), Bangalore, India, as a software engineer. He earned his
Ph.D. degree from the Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, in 2001.
He is currently with the Algorithms Research Group, DigitalPersona Inc., Redwood City, CA 94063. His research interests include pattern
recognition, image processing, computer vision, machine learning, biometrics, data mining, and multimedia applications.

About the Author—SHARATH PANKANTI is with the Exploratory Computer Vision and Intelligent Robotics Group, IBM T.J. Watson
Research Center, Yorktown Heights, NY. He works on the Advanced Identi!cation Solutions Project dealing with reliable and scalable
identi!cation systems. His research interests include biometrics, pattern recognition, computer vision, and human perception.

http:
mailto://www.humancloning.org/users/infertil/humancloning.htm
http://www.veridicom.com/
http://www.forensic-
mailto:evidence.com/site/ID_Twins.html
http://www.nist.gov/
mailto:srd/nistsd9.htm
http://www.afb.org.uk/bwg/bestprac10.pdf
http://www.nist.gov/
mailto:srd/nistsd4.htm
http://www.linguafranca.com/print/0011/
mailto:featureprotect unhbox voidb@x kern .06emvbox {hrule width.3em}fingerprints.html, 2000

	On the similarity of identical twin fingerprints
	Introduction
	Fingerprint formation
	Automatic fingerprint identification
	Experimental results
	Conclusions
	Summary
	Acknowledgements
	References


